

Liji Huang

Siargo Ltd. Santa Clara, California

Gas Flow Meters with Thermal Time-of-Flight Technology Utility Gas Meters

Backgrounds – market for utility gas metering

Huge market with smart gas meters for commercial application leads the growth.

Rotary

Gas Meters

Other

MARKET RESEARCH FUTURE

Gas Meters

Diaphragm

Gas Meters

Turbine

Gas Meters

Backgrounds

Diaphragm meter is the best flow meter technology that enjoys the longest lifetime in the vast installation

Starting in 1980s-90s (ultrasonic) and 2000s (MEMS calorimetric)

- The earlier ultrasonic meter deployment was not very successful, but it revives in recent years with limited success; it is however still volumetric custody transfer
- Siargo deployed its commercial calorimetric gas meters since 2007
- MeteRSit installed its calorimetric gas meters since 2013, very successful in Italy.

MEMS calorimetric utility meters deployment in Italy

- Gas composition induced varieties (EN 437)
 - Establishing the metrology relevance
- Intrinsic temperature effects
 - Added additional metrology uncertainties
- Contamination dust test uncertainties with EN 14236
- Electronic drifting quantification methodology

Power issue – battery life and failure

Histroy of the products

7 FLOMEKO201 I³⁰ Predictional Flow Measurement Conference Marger Linker (Marga Measurement)

- Calorimetry
- $CH_4 + GCF$
- Battery powered
- 2 Serials/10 Models

- Calorimetry
- Gas Identification
- Offset stability
- Battery power
- 2个 Serials/10 Models

- TTOF+Calorimetry
- Gas identification
- Offset stability
- Thermal values
- Contamination diagnosis
- Battery + Energy Harvester

2014 - 2020 (GEN II)

2020 - (GEN III)

Technology advantages

Ultrasonic

Metrology Digital data Temperature Pressure Thermal value Contamination Offset Energy harvester

Volumetric √ Additional device Additional device X X X

Х

Thermal Time-of-flight

Calorimetric + volumetric $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ (possible) Via comparison and conductivity $\sqrt{}$ $\sqrt{}$

Design of the sensor and meter

 $\frac{\partial T}{\partial t} = D\left(\frac{\partial^2 T}{\partial x^2}\right) - V_x\left(\frac{\partial T}{\partial x}\right)$

$$V_x = \sqrt{(d_1^2/t_1 - d_2^2/t_2)/(t_1 - t_2)}$$

Micromachined Suspending Membrane

Positive pressure real gas test ring

- Shinagawa W-NK Wet meter as the reference; ±0.5% uncertainties
- A blower with variable frequency to adjust flowrate

Calibration in air

Calibration in air: The uncertainties measured from time lag and amplitude data at the reference conditions.

Pressure verification for TOF

Pressure verification: Time lag data verification against different pressure at the reference temperature.

Pressure verification for TOF

Table 1: Compositions of the natural gases tested.

Gas \ Con.	CH4	C2H6	C3H8	Others
CH4	100%	0	0	0
CxHy	86.9%	8.5%	2.3%	2.3%

• Time lag data vs. amplitude data showing the different metrology characteristics

Gas data Verification measurements for gases with different compositions.

Temperature performance

Temperature performance: Verification measurements for gases with different compositions.

Thermal harvester

Raw output of the harvester: Direct output from a thermal (temperature) energy harvester.

Concluding remarks

- A thermal time-of-flight technology based on MEMS sensing scheme is demonstrated
 - Have better stability in performance compared to calorimetry
 - Easy to perform gas identification
 - Multiple parameters for self-diagnosis
 - Thermal value direct measurement viable
 - "Powerless" thermal mass flow with energy harvesting can be achieved in a limited dynamic flow range